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Power Electronics - Key Technology for Modern Grids  
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Power Electronic Based Power Systems
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Harmonics and Wideband Control of Power Electronics
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LC Resonances of Converter Filters and Power Cables
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Harmonic Stability in Future Electronic Power Systems 
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Real-World Harmonic Instability Phenomena 
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VSC-HVDC + Offshore Wind

Two-Level VSC filter resonance 
Type-3 (DFIG) wind turbine   

- World’s first High-Voltage Direct
Current (HVDC) connecting 
offshore wind farm

- Harmonic instability tripped 
the offshore wind farm [1]

- 3 years behind schedule at a 
cost of €3 billion [2]

[1] M. Larsson, ”Harmonic resonance and control 

interoperability analysis of HVDC connected wind 

farms,” IEEE eT&D, Aalborg, 2017. 

[2] https://en.wikipedia.org/wiki/BARD_Offshore_1



Real-World Harmonic Instability Phenomena 

2024-02-08 Harmonic Stability | Xiongfei Wang | KTH 9

VSC-HVDC + Offshore Wind

Two-Level VSC filter resonance 
Type-3 (DFIG) wind turbine   

MMC-HVDC Transmission

Instability of current control in 
weak ac grid 

©CSG
Electrification of Railways

Locomotives is out of control 
because of abnormal harmonics



Real-World Harmonic Instability Phenomena 
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MMC-HVDC in AC Grid, Luxi, Yunnan, China [1]
- 1270 Hz resonance induced by current control
- Negative damping caused by time delay   
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MMC-HVDC in Offshore Wind Farm, Germany [2]
- 451 Hz resonance in the North Sea wind farm
- Connection of a cable at 0.1 s

Connection of a cable at 0.1s

[1]  C. Zou, H. Rao, S. Xu, et al., ”Analysis of resonance between a VSC-HVDC converter and the ac grid,” IEEE Trans. Power Electron., vol. 33, no. 12, pp. 10157–10168, 2018. 

[2]  C. Buchhagen, M. Greve, A. Menze, and J. Jung, “Harmonic stability-practical experience of a TSO,” Proc. 15th Wind Integration Workshop, pp. 1–6, 2016. 



Real-World Harmonic Instability Phenomena 
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[1]  K. Song, M. Wu, S. Yang, Q. Liu, V. G. Agelidis, and G. Konstantinou, “High-order harmonic resonances in traction power supplies: a review based on railway operational data, measurements 

and experience,” IEEE Trans. Power Electron., vol. 35, no. 3, Mar. 2020. 
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Harmonic instability in railway traction power supply system - 15-75 times fundamental frequency [1]
- Derating surge arrester due to harmonic resonances - short-circuit fault  



Harmonic, Resonance, and Instability 

2024-02-08 Harmonic Stability | Xiongfei Wang | KTH 12

Modulator

DC-Bus Voltage Control 

Vector Current Control 

Vdc

Vdc

Phase-Locked 
Loop (PLL)

iac

iac

θg

Vac

AC-Bus Voltage 
Control

id iq

Vacd

Vacd

Vacd

dq
αβ 

* * 

* 

* * 

Lg

Cf VgGcl iac

Zg

*
iac

YclVdc
Vg

Grid

Zg
Lf Lg
Cf

- Re{Ycl}>0: stable, yet underdamped
Harmonic

- Re{Ycl}=0: critically stable, zero-damped
Resonance

- Re{Ycl}<0: unstable, negatively-damped
Instability 
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[1]  X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling and analysis,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2858-2870, May 2019.    
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[1]  X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling and analysis,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2858-2870, May 2019.    
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[1]  X. Wang and F. Blaabjerg, “Harmonic stability in power electronic based power systems: concept, modeling and analysis,” IEEE Trans. Smart Grid, vol. 10, no. 3, pp. 2858-2870, May 2019.    
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Converter Modeling for Harmonic Stability Analysis  
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1970

1985

1997

2000

2003 2014
Persson [1] - thyristor HVDC
Frequency response analysis 
Describing Function with single 
sinusoidal inputs

For control design

Sakui and Fujita [2] - thyristor  
rectifier, Switching Function 
model w/o firing angle 
variation considered

For harmonic analysis  

Mattavelli, Verghese, Stankovic 
[5] - thyristor FACTS devices
Dynamic Phasor with time-variant 
Fourier coefficients 

For control design 

Wang, Harnefors, Blaabjerg [12] -
Unified Impedance Model from 
dq-frame to αβ-frame, 2nd-order
Harmonic Transfer Matrix

For control design 

Cespedes and Sun [11] - stability 
effect of PLL on PWM converter
Harmonic Balance, Multi-Input 
Describing Functions 

For control design 

Rico, Madrigal, Acha [7] -
STATCOM with phase angle 
control, Extended Harmonic 
Domain (EHD)

For harmonic analysis

Mollerstedt [6] - locomotive 
inverter, Harmonic State-Space 
(HSS) modelling, Harmonic 
Transfer Matrix 

For harmonic stability analysis

1989
Larson, Baker, McIver [4] -
thyristor HVDC, numerical 
simulations derived Harmonic 
Cross-Coupling Matrix 

For harmonic/control analysis

2007
Harnefors [8] - DQ-frame model 
with the phase variation;
Wen, Boroyevich, et, al [9], 2016
Rygg, Molinas, Zhang, [10], 2016

For control design 

1986
Ngo [3] - PWM converter
State-Space Averaging 
with Park transformation 
DQ-frame linearized model

For control design 

2016



Converter Model Validation - Frequency Scan 
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Converter Model Validation - Frequency Scan 
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Converter Model Validation - Frequency Scan 
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Impedance measurement toolbox

YVSC11(s)
Measurement 

f (Hz) f (Hz)

YVSC12(s)
Measurement 

YVSC21(s)
Measurement 

YVSC22(s)
Measurement 

- Fully automated, PSCAD/EMT compatible  

- Impedance matrix in different reference (dq or αβ) frame 

- Used by Europe’s leading TSOs in multiple commercial projects 

Impedance measurement software – commercialized  Software users

- For more information, visit our spinoff www.aistability.dk

http://www.aistability.dk/


Origin of Negative Resistance 
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Methods for Mitigation of Harmonic Instability 
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Frequency-Domain Impedance Passivity Control 

≈

Passive component

Resistor

Dissipate energy

Passive network Passive network Passive network
Passive component

Resistor

Dissipate energy

Grid-forming (GFM) battery energy storage systems shall present a non-negative resistance within 0-300 Hz [1]

• In low frequency range, grid-connected converter is inherently non-passive at 0 Hz (dq-frame), or 50 Hz (αβ-frame)

• Nature of constant power operation, e.g., P = ui

• Impedance matrix is required for the frequency range below 100 Hz (αβ-frame)

• Insufficient, unnecessary stability criterion

GFM battery energy storage system shall present a non-negative resistance within 0-47 Hz and 53-250 Hz [2]

[1]  NERC, “Grid forming functional specifications for BPS-connected battery energy storage systems,” Sept. 2023.

[2] FINGRID, “Specific study requirements for grid energy storage systems,” Jun. 2023.
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Frequency-Domain Impedance Passivity Control 

Ø A linear, continuous system G(s) is passive if

- G(s) is stable, no right half-plane poles 

- Re{G(jω)} ≥ 0, -90˚ ≤ arg{G(jω)} ≤ 90˚

Ø A cascaded dynamic system is stable if 

- All subsystems G(s), H(s) are passive

- Sufficient, but not necessary, condition

- Increasingly adopted by industry  

r
G(s)

H(s)

y

-180˚ ≤ arg{G(jω)H(jω))} ≤ 180˚

Ø Minimization of control delay

- Multi-sampling control

- Hysteresis current control 

1.5( ) 6, 2]sT s
d s sG s e w w w-= Þ Î( ( ) 4, 2]sT s

d s sG s e w w w-= Þ Î(
Ts: computation; 0.5Ts: PWM 0.5Ts: computation; 0.5Ts: PWM

Sampling instant shift with 0.5Ts
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Hardware solution – active damper based on high-frequency switching power converter
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Hardware solution – active damper based on high-frequency switching power converter

- Paralleled VSCs w/o AD

- Paralleled VSCs w/ AD
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Hardware solution – active damper based on high-frequency switching power converter

PCC voltage Converter currents

w/o active damper

Converter currentsPCC voltage

w/ active damper



Methods for Mitigation of Harmonic Instability 

2024-02-08 Harmonic Stability | Xiongfei Wang | KTH 26

Grid-Forming Control Driven by Transmission System Operators (TSOs)

- 2020 2021

2022 2023
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Initial Idea behind Grid-Forming Control – A voltage source in synchronism with other power sources  
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A deeper dive into difference between legacy grid-following control and grid-forming control 

Control Principle Grid-Following Converter Grid-Forming Converter

Synchronization 
- Reliance on external voltage
- Voltage-based synchronization 
- Phased-Locked Loop (PLL) or equivalent

- Self-synchronization 
- Power-/current-based synchronization 
- PLL may be used  [1], [2]

Operation mode - Current source in the sub-transient timeframe - Voltage source in the sub-transient timeframe

Active power (P ) control - P-ω droop by measuring ω; constant P - P-ω droop without measuring ω; constant P

Voltage and Reactive Power 
(Q) control 

- Voltage magnitude (V) control 
- Q-V droop, constant V, constant Q

- Voltage vector control, critical to voltage stiffness
- Q-V    droop + P-ω droop 

Current control 
- Fast current control with limited response speed
- Reference tracking and disturbance rejection 

- Fast (natural) response speed within current limit
- Overcurrent limiting + impedance shaping [3]



Takeaways
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Impedance modeling of converter for harmonic stability analysis 

Advancements in mitigating harmonic instability are demanded 

- Negative real part of converter impedance causes harmonic instability 

- Origin of negative real part of converter impedance – time delay of current control, constant power operation 

- Impedance passivity control – sufficient, but not necessary, condition for harmonic stability 

- Active damper based on high-frequency, high-bandwidth converter – more flexible than passive dampers

- Grid-forming capability being required soon by power system operators 

Harmonic stability differs from harmonic resonance in its dependence on converter control dynamics 
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Xiongfei Wang

xiongfei@kth.se


